The intraneuronal conversion of testosterone to oestradiol constitutes a critical step in the development and sexual differentiation of the brain of many short gestation mammalian species and has been inferred to play a similar role in long gestation sheep. This conversion is catalysed by cytochrome P450 aromatase (CYP19), which is expressed in specific brain structures during foetal development. The present study was undertaken to examine the specific neuroanatomical distribution and relative expression of aromatase mRNA in the developing sheep hypothalamus. The foetal sheep is a highly tractable model system for localising the region-specific expression of aromatase in the brain during prenatal development that can help predict regions where oestrogen acts to shape neural development. Our results, obtained using real time quantitative reverse transcriptase-polymerase chain reaction, revealed that aromatase mRNA was expressed throughout mid to late gestation in the foetal preoptic area and amygdala. In the preoptic area, aromatase expression declined with advancing gestation, whereas, it increased in the amygdala. No sex differences were observed in either brain area. We next investigated the anatomical distribution of aromatase using in situ hybridisation histochemistry and found that the pattern of mRNA expression was largely established by midgestation. High expression was observed in the medial preoptic nucleus, bed nucleus of the stria terminalis and corticomedial amygdala. We also observed substantial expression in the dorsal striatum. These results extend our understanding of the developmental expression of aromatase in the foetal sheep brain and lend support to the view that it plays an essential role in sexual differentiation and maturation of the neuroendocrine, motor and reward control systems.