With the development of Global Navigation Satellite System (GNSS), multi-GNSS is expected to greatly benefit precise point positioning (PPP), especially during the outage of real time service (RTS). In this paper, we focus on the performance of multi-GNSS satellite clock prediction and its application in real-time PPP. Based on the statistical analysis of multi-system satellite clock products, a model consisting of polynomial and periodic terms is employed for multi-system satellite clock prediction. To evaluate the method proposed, both post-processed and real-time satellite clock products are employed in simulated real-time processing mode. The results show that the accuracy of satellite clock prediction is related to atomic clock type and satellite type. For GPS satellites, the average standard deviations (STDs) of Cs atomic clocks will reach as high as 0.65 ns while the STD of Rb atomic clocks is only about 0.15 ns. As for BDS and Galileo, the average STD of 2-hour satellite clock prediction are 0.30 ns and 0.06 ns, respectively. In addition, it is validated that real-time PPP can still achieve positioning accuracy of one to three decimeters by using products of 2-hour satellite clock prediction. Moreover, compared to the results of GPS-only PPP, multi-system can greatly enhance the accuracy of real-time PPP from 12.5% to 18.5% in different situations.
Read full abstract