Abstract
The paper presents a platform for distributed computing, developed using the latest software technologies and computing paradigms to enable big data mining. The platform, called ClowdFlows, is implemented as a cloud-based web application with a graphical user interface which supports the construction and execution of data mining workflows, including web services used as workflow components. As a web application, the ClowdFlows platform poses no software requirements and can be used from any modern browser, including mobile devices. The constructed workflows can be declared either as private or public, which enables sharing the developed solutions, data and results on the web and in scientific publications. The server-side software of ClowdFlows can be multiplied and distributed to any number of computing nodes. From a developer’s perspective the platform is easy to extend and supports distributed development with packages. The paper focuses on big data processing in the batch and real-time processing mode. Big data analytics is provided through several algorithms, including novel ensemble techniques, implemented using the map-reduce paradigm and a special stream mining module for continuous parallel workflow execution. The batch mode and real-time processing mode are demonstrated with practical use cases. Performance analysis shows the benefit of using all available data for learning in distributed mode compared to using only subsets of data in non-distributed mode. The ability of ClowdFlows to handle big data sets and its nearly perfect linear speedup is demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.