Abstract
Big Data has emerged with new opportunities for research, development, innovation and business. It is characterized by the so-called four Vs: volume, velocity, veracity and variety and may bring significant value through the processing of Big Data. The transformation of Big Data's 4 Vs into the 5th (value) is a grand challenge for processing capacity. Cloud Computing has emerged as a new paradigm to provide computing as a utility service for addressing different processing needs with a) on demand services, b) pooled resources, c) elasticity, d) broad band access and e) measured services. The utility of delivering computing capability fosters a potential solution for the transformation of Big Data's 4 Vs into the 5th (value). This paper investigates how Cloud Computing can be utilized to address Big Data challenges to enable such transformation. We introduce and review four geospatial scientific examples, including climate studies, geospatial knowledge mining, land cover simulation, and dust storm modelling. The method is presented in a tabular framework as a guidance to leverage Cloud Computing for Big Data solutions. It is demostrated throught the four examples that the framework method supports the life cycle of Big Data processing, including management, access, mining analytics, simulation and forecasting. This tabular framework can also be referred as a guidance to develop potential solutions for other big geospatial data challenges and initiatives, such as smart cities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.