With the development of machine vision and multimedia technology, posture detection and related algorithms have become widely used in the field of human posture recognition. Traditional video surveillance methods have the disadvantages of slow detection speed, low accuracy, interference from occlusions, and poor real-time performance. This paper proposes a real-time pose detection algorithm based on deep learning, which can effectively perform real-time tracking and detection of single and multiple individuals in different indoor and outdoor environments and at different distances. First, a corresponding pose recognition dataset for complex scenes was created based on the YOLO network. Then, the OpenPose method was used to detect key points of the human body. Finally, the Kalman filter multi-object tracking method was used to predict the state of human targets within the occluded area. Real-time detection of human postures (sitting, stand up, standing, sit down, walking, fall down, and lying down) is achieved with corresponding alarms to ensure the timely detection and processing of emergencies.
Read full abstract