Emergency decision support techniques play an important role in complex and safety-critical systems such as nuclear power plants (NPPs). Emergency decision-making is not a single method but a framework comprising a combination of various technologies. This paper presents a review of various methods for emergency decision support systems in NPPs. We first discuss the theoretical foundations of nuclear power plant emergency decision support technologies. Based on this exposition, the key technologies of emergency decision support systems in NPPs are presented, including training operators in emergency management, risk assessment, fault detection and diagnosis, multi-criteria decision support, and accident consequence assessment. The principles, application, and comparative analysis of these methods are systematically described. Additionally, we present an overview of emergency decision support systems in NPPs across different countries and feature profiles of prominent systems like the Real-Time Online Decision Support System for Nuclear Emergencies (RODOS), the Accident Reporting and Guiding Operational System (ARGOS), and the Decision Support Tool for Severe Accidents (Severa). Then, the existing challenges and issues in this field are summarized, including the need for better integration of risk assessment, methods to enhance education and training, the acceleration of simulation calculations, the application of large language models, and international cooperation. Finally, we propose a new decision support system that integrates Level 1, 2, and 3 probabilistic safety assessment for emergency management in NPPs.