It has long been recognised that volcanoes deform as fluids migrate, or change pressure in fractures and reservoirs within the volcano or in the crust below and around them. Calderas in particular have been shown to deform in complex and often major ways. The Rabaul Caldera is a type example of a caldera that undergoes complex and occasionally rapid deformation. This was first recognised by visual observations, and by the 1970s these movements were being monitored by traditional surveying techniques. Between 1972 and 1994, the centre of the caldera was uplifted by approximately 2 m. Following the 1994 eruption, it was indirectly found that parts of the caldera were uplifted ~6 m in the final hours before the eruption. It was realized that ‘real-time’ monitoring of the uplift may have given a better warning that an eruption was imminent. Traditional surveying techniques are time consuming; in the late 1990s, the only option for real-time monitoring was a Global Positioning System (GPS). By early 2000, a real-time GPS system was working at Rabaul Volcanological Observatory (RVO). Twenty-two years of continually recording differential GPS or Global Navigational Satellite System (GNSS) has proven the technique to be of immense importance. Often it has been the only parameter showing that unrest is happening. At times, inflation and deflation have warned of impending activity or recorded the emptying of the system; at other times, patterns of deformation have been more difficult to interpret. The technique has proven its worth in monitoring the status or general ‘health’ of the caldera, but for more precise forecasts it can only form part of an integrated monitoring system. Current testing of much cheaper receivers and improvements in telemetry mean the technique may soon be available for the more remote volcanoes of Papua New Guinea.