Abstract

SUMMARYThe 2019 Mw 7.1 Ridgecrest earthquake opens an opportunity to investigate how soon we can produce a reliable fault geometry and subsequently a robust source model based on high-rate Global Positioning System (GPS) data. In this study, we conduct peak ground displacement (PGD) magnitude scaling, real-time centroid moment tensor (CMT) calculation and rapid kinematic slip inversion. We conclude that a four-station PGD warning with a magnitude of Mw 7.03 can be issued at 24 s after initiation of the rupture. Fast CMT inversion can initially recover the correct nodal planes at 30 s. The kinematic slip model reveals that the Mw 7.1 earthquake is a predominant dextral strike-slip event with both normal and thrust components resolved. The earthquake shows a bilateral rupture with a low propagation speed of ∼2.1 km s−1 and a slip maxima of ∼4 m. The total moment is 5.18 × 1019 N m (Mw 7.11). We further suggest that a reasonable source model will be available in a simulated real-time mode within 30 s after the earthquake occurring, without using full high-rate GPS waveforms. This research highlights the significance of high-rate GPS for rapid earthquake response and modelling of kinematic rupture, which is also generalized by the hypothetical real-time GPS analysis for the 2016 Mw 7.8 Kaikoura earthquake and the 2010 Mw 7.2 El Mayor-Cucapah earthquake.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call