In this work, an amino-functionalized graphene oxide/polypyrrole (AMGO/PPy) composite-based novel sensing platform was established to monitor lead ions (Pb2+) at high sensitivity. AMGO was synthesized through a hydrothermal process and later formed a composite with PPy at varying concentrations. A physicochemical investigation of the synthesized materials was carried out using various characterization tools, while the electrochemical properties were examined by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS) methods. The AMGO/PPy composite was deposited on a glassy carbon electrode (GCE), which was used for the real-time electrochemical detection of Pb2+. The AMGO/PPy sensor exhibited lower limits of detection (LOD) of 0.91 nM. In addition, the developed Pb2+ sensor exhibited excellent reproducibility, repeatability, selectivity, sensitivity, and long-term stability for 25 days. The AMGO/PPy composite emerges as a ground-breaking material for the electrochemical detection of Pb2+, holding significant potential for environmental monitoring and the protection of human health.
Read full abstract