With a growing interest in the Internet of Things (IoT), the businesses are undergoing a revolution in the way they monitor and control. In the recent past, many applications were developed using the IoT system architectures in various business verticals such as industrial, healthcare, farming, transportation, etc. However, with the development of low-complex artificial intelligence frameworks which are capable of operating on the edge devices, the IoT architectures have taken a major leap leading to the Internet of Intelligent Things (IoIT). In this paper, we discuss our focused research and applications of IoIT across the following verticals: (1) healthcare, (2) smart buildings, (3) farming, along with the recent state of the art methodologies and future challenges. Under the healthcare, we laid our main focus on the development of AI enabled computer-aided diagnosis framework, which acquires the scanning information from a wireless ultrasound transducer and automatically identifies the abnormalities present. Also, we developed a low-complex brain-controlled IoT environments framework which automatically classifies the motor imagery task performed by the user using 22 channel electroencephalography. Using IoIT, we developed a novel non-invasive technology capable of monitoring various electrical parameters without any need for cutting the wires. This developed non-invasive power monitor is capable of generating real-time alerts in the case of system malfunctions and will be a key enabler for smart buildings. Also, we developed mathematical, simulation, and experimental models for analyzing the performance of channel access mechanisms of dense traffic IoT networks.
Read full abstract