We study stability radii of linear retarded systems described by general linear functional differential equations. A lower and an upper bound for the complex stability radius with respect to multi-perturbations are given. Furthermore, in some special cases concerning the structure matrices, the complex stability radius can precisely be computed via the associated transfer function. Then, the class of positive linear retarded systems is studied in detail. It is shown that for this class, complex, real and positive stability radius under multi-perturbations or multi-affine perturbations coincide and can be computed by simple formulae expressed in terms of the system matrices.
Read full abstract