The evaluation of the superheat at the critical heat flux (CHF) is a problem of considerable importance to the field of change-of-phase heat transfer. As demonstrated in the recent reviews by Katto and Bergles and in a descriptive paper by Unal et al., there has been extensive prior research on the CHF. In these studies, the following descriptive modeling terms affirm the complex transport processes occurring at CHF: macrolayer, microlayer, apparent contact angle, real contact angle, spreading, dry patch, instability, vapor mushrooms, and interfacial conditions. In order to simplify the analyses of these phenomena, we focus herein on a more tractable model, which emphasizes a characteristic thickness in the contact line region at the vapor-liquid-solid junction, which would be present in the thinnest portion of an evaporating microlayer. A schematic drawing of this region is presented in Fig. 1 for a nonisothermal completely wetting system. This is the region where the substrate dries out in the hot spot hypothesis. The solid substrate is modeled as having an adsorbed ultrathin layer of liquid with a thickness {delta}, which is a function of the superheat and the interfacial force field. The characteristic thickness, {delta}{sub 0}, can (but does not have to) bemore » of the order of a monolayer or less. Therefore, in the region x < 0, the film can be discontinuous and fill in {open_quotes}depressions{close_quotes} on a {open_quotes}rough{close_quotes} surface. Herein, a model of the physically indistinct contact line region, which varies spatially and fluctuates at the molecular level, is used to develop a predictive equation for the average value of the superheat that can be evaluated macroscopically. 9 refs., 2 figs., 1 tab.« less
Read full abstract