A class of complex breather and soliton solutions to both KdV and mKdV equations are identified with a Pöschl-Teller type PT\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathscr{P}\\mathscr{T}$$\\end{document}-symmetric potential. However, these solutions represent only the unbroken-PT\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathscr{P}\\mathscr{T}$$\\end{document} phase owing to their isospectrality to an infinite potential well in the complex plane having real spectra. To obtain the broken-PT\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathscr{P}\\mathscr{T}$$\\end{document} phase, an extension of the potential satisfying the sl2,R\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$sl\\left( 2,\\mathbb {R}\\right)$$\\end{document} potential algebra is mandatory that additionally supports non-trivial zero-width resonances.
Read full abstract