In the past decades, the invention of scanning probe microscopy (SPM) as the versatile surface-based characterization of organic molecules has triggered significant interest throughout multidisciplinary fields. In particular, the bond-resolved imaging acquired by SPM techniques has extended its fundamental function of not only unraveling the chemical structure but also allowing us to resolve the structure-property relationship. Here, we present a systematical review on the history of chemical bonds imaged by means of noncontact atomic force microscopy (nc-AFM) and bond-resolved scanning tunneling microscopy (BR-STM) techniques. We first summarize the advancement of real-space imaging of covalent bonds and the investigation of intermolecular noncovalent bonds. Beyond the bond imaging, we also highlight the applications of the bond-resolved SPM techniques such as on-surface synthesis, the determination of the reaction pathway, the identification of molecular configurations and unknown products, and the generation of artificial molecules created via tip manipulation. Lastly, we discuss the current status of SPM techniques and highlight several key technical challenges that must be solved in the coming years. In comparison to the existing reviews, this work invokes researchers from surface science, chemistry, condensed matter physics, and theoretical physics to uncover the bond-resolved SPM technique as an emerging tool in exploiting the molecule/surface system and their future applications.