The calibration of reservoir models using production data can enhance the reliability of predictions. However, history matching often leads to only a few matched models, and the original geological interpretation is not always preserved. Therefore, there is a need for stochastic methodologies for history matching. The Ensemble Kalman Filter (EnKF) is a well-known Monte Carlo method that updates reservoir models in real time. When new production data becomes available, the ensemble of models is updated accordingly. The initial ensemble is created using the prior model, and the posterior probability function is sampled through a series of updates. In this study, EnKF was employed to evaluate the uncertainty of production forecasts for a specific development plan and to match historical data to a real field reservoir model. This study represents the first attempt to combine EnKF with an integrated model that includes a genuine oil reservoir, actual production wells, a surface choke, a surface pipeline, a separator, and a PID pressure controller. The research optimized a real integrated production system, considering the constraint that there should be no slug flow at the inlet of the separator. The objective function was to maximize the net present value (NPV). Geological data was used to model uncertainty using Sequential Gaussian Simulation. Porosity scenarios were generated, and conditioning the porosity to well data yielded improved results. Ensembles were employed to balance accuracy and efficiency, demonstrating a reduction in porosity uncertainty due to production data. This study revealed that utilizing a PID pressure controller for the production separator can enhance oil production by 59% over 20 years, resulting in the generation of 2.97 million barrels of surplus oil in the field and significant economic gains.