Excessive exercise is a primary cause of sports injuries and sudden death. Therefore, it is vital to develop an effective monitoring technology for exercise intensity. Based on the noninvasiveness and real-time nature of an electrocardiogram (ECG), exercise ECG classification based on ECG features could be used for detecting exercise intensity. However, current R-peak detection algorithms still have limitations, especially in high-intensity exercise scenarios and in the presence of noise interference. Additionally, the features utilized for exercise ECG classification are not comprehensive. To address these issues, the following tasks have been accomplished: (1) a hybrid time–frequency-domain model, BILSTM-CNN, is proposed for R-peak detection by utilizing BILSTM, multi-scale convolution, and an attention mechanism; (2) to enhance the robustness of the detector, a preprocessing data generator and a post-processing adaptive filter technique are proposed; (3) to improve the reliability of exercise intensity detection, the accurate heart rate variability (HRV) features derived from the proposed BILSTM-CNN and comprehensive features are constructed, which include various descriptive features (wavelets, local binary patterns (LBP), and higher-order statistics (HOS)) tested by the feasibility experiments and optimized deep learning features extracted from the continuous wavelet transform (CWT) of exercise ECG signals. The proposed system is evaluated by real ECG datasets, and it shows remarkable effectiveness in classifying five types of motion states, with an accuracy of 99.1%, a recall of 99.1%, and an F1 score of 99.1%.
Read full abstract