The study sampled wild Sesame from open field in South Africa. The samples were pretreated while the extracts were screened for phytochemical compositions and applied for water purification using standard procedures. The physicochemical properties of sampled raw and purified water (pH, total dissolved solids, salinity turbidity and conductivity) were analyzed in situ before and after treatment in the lab, respectively. The plant’s phytochemical extract from the leaves and stem was prepared using selected solvents (methanol, cold water and warm water). The results revealed the presence of phytochemicals including tannins, phenols, flavonoids, steroids, anthraquinone, terpenoids, saponins, and phlobatannins in both the stem and leaf of the wild Sesame plant. The study shows effective percentage reduction of E. coli and total bacteria with extracts of leaf (98.5, 100.0 and 97.2%), (98.8, 100.0 and 95.0%) and stem (94.0, 95.4 and 99.0%), (99.4, 98.6 and 98.4%) using methanol, cold and warm water, respectively, at 5ml of the phytochemical extracts. This study explores the use of wild Sesame phytochemicals for disinfecting river and stream water samples, highlighting the potential for greener and sustainable water treatment. The physicochemical parameters of the treated water were within tolerable limits, especially salinity and the total dissolved solids. Thus, the extract is presented as a potential solution for water purification, aligning with SDG goals 6 (clean water), 9, and 12 (green innovations). It fills the knowledge and product gap in water treatment, causing minimal harm, consistent with the African Union's sustainable development agenda and the African Council on Water's goal for clean water. This innovation meets the criteria for technology readiness levels 2 and 3, making it ready for further development.
Read full abstract