This paper presents investigations on catalytic and non-catalytic grass pyrolysis conducted at 500 °C using two reactor scales: a micro-scale reactor and a laboratory fixed-bed reactor. Four catalysts were employed in the catalytic pyrolysis process: car tyre ash, commercial zeolite mordenite-sodium, nickel supported on ash, and nickel supported on zeolite. The use of catalysts reduced the production of oxygenates and promoted the formation of gaseous compounds, with the most pronounced effect observed for nickel supported on zeolite. Catalytic pyrolysis produced chars with yields that were higher than those of the non-catalytic process. The coking behaviour of the spent catalysts was evaluated by analysing carbon content, with the highest content (3 wt% C) obtained for ash after the first cycle. In the second cycle, the deposited carbon content decreased for all catalysts. Furthermore, the employment of catalysts was shown to promote the production of hydrogen, methane, and other hydrocarbons in pyrolysis gas. The higher heating value of the pyrolysis gas was the highest at 21.1 MJ/m³ when the ash catalyst was first used for pyrolysis. Reusing the pyrolysis catalysts slightly reduced the heating value of the gas to 20.3 MJ/m³ over ash and 20.6 MJ/m³ over zeolite.