A dynamic model has been developed to describe upflow anaerobic sludge blanket (UASB) reactors from several aspects including reactor hydraulics, biological reaction kinetics, and mass transfer within anaerobic granules. A flow model of a nonideal continuously stirred tank reactor (CSTR) followed by a dispersion plug flow reactor (PFR) was used to simulate the reactor hydraulics as observed from a LiCl tracer study. The dynamic model based on this flow model was then evaluated by a set of acetate impulse data and verified with a data set from a two-step acetate feed increase experiment from a bench-scale UASB reactor. The model describes UASB reactor performance well. Simulation results indicate significant effects of reactor nonideal flow, diffusional resistance, as well as degradation kinetics on overall substrate utilization rate. Sensitivity analyses on model parameters Ks, km, KL, D, R, and nonideal flow factors revealed granule size has a strong impact on the reactor performance. The effect of KL is not significant. Reactor mixing was improved by an increase in biogas production.