In this study, we report a series of DIMPhos ligands L1-L3, bidentate phosphorus ligands equipped with an integral anion binding site (the DIM pocket). Coordination studies show that these ligands bind to a rhodium center in a bidentate fashion. Experiments under hydroformylation conditions confirm the formation of the mononuclear hydridobiscarbonyl rhodium complexes that are generally assumed to be active in hydroformylation. The metal complexes formed still strongly bind the anionic species in the binding site of the ligand, without affecting the metal coordination sphere. These bifunctional properties of DIMPhos are further demonstrated by the crystal structure of the rhodium complex with acetate anion bound in the binding site of the ligand. The catalytic studies demonstrate that substrate preorganization by binding in the DIM pocket of the ligand results in unprecedented selectivities in hydroformylation of terminal and internal alkenes functionalized with an anionic group. Remarkably, the selectivity controlling anionic group can be even 10 bonds away from the reactive double bond, demonstrating the potential of this supramolecular approach. Control experiments confirm the crucial role of the anion binding for the selectivity. DFT studies on the decisive intermediates reveal that the anion binding in the DIM pocket restricts the rotational freedom of the reactive double bound. As a consequence, the pathway to the undesired product is strongly hindered, whereas that for the desired product is lowered in energy. Detailed kinetic studies, together with the in situ spectroscopic measurements and isotope-labeling studies, support this mode of operation and reveal that these supramolecular systems follow enzymatic-type Michaelis-Menten kinetics, with competitive product inhibition.
Read full abstract