Clarifying reactive oxygen species (ROS) variation in the presence of co-existing anions is significant for understanding the catalytic effect of magnetite (Fe3O4)-induced advanced oxidation processes (AOPs) in natural environment, yet this remains controversial. Herein, we compare the specific impacts of NO3-, SO42-, and Cl- on ROS (•OH, SO4•-, O2•-, and 1O2) exposure concentration in H2O2 and peroxydisulfate (PDS) systems, as well as how these variations affect the catalytic efficiency by developing kinetic model. In both two systems, NO3- demonstrates no discernible effect on ROS, whereas SO42- inhibits the exposure of all ROS and thus micropollutants degradation. Through theoretical calculation, it is proposed that SO42- primarily exerts its influence through affecting the electronic structure over catalyst surface. Regarding Cl-, it affects ROS exposure mainly by reacting with ROS. It shows inhibitory effect on 1O2 in both systems, but its suppressive impact on •OH is markedly more pronounced in H2O2 system compared to PDS system, which may be related to its rapid reactivity with SO4•-. Besides, the chlorine radicals (mainly ClO•) generated through the reaction of Cl- may exert a selective influence on micropollutants degradation. This study can help to re-understand the influence behavior of co-existing anions during AOPs.
Read full abstract