Abstract

Borrelia burgdorferi is a pathogenic bacterium and the causative agent of Lyme disease. It is exposed to reactive oxygen species (ROS) in both the vertebrate and tick hosts. While some mechanisms by which B. burgdorferi ameliorates the effects of ROS exposure have been studied, there are likely other unknown mechanisms of ROS neutralization that contribute to virulence. Here, we follow up on a three gene cluster of unknown function, bb_0554, bb_0555, and bb_0556, that our prior unbiased transposon insertional sequencing studies implicated in both ROS survival and survival in Ixodes scapularis. We confirmed these findings through genetic knockout and provide evidence that these genes are co-transcribed as an operon to produce a xanthine dehydrogenase. In agreement with these results, we found that B. burgdorferi exposure to either uric acid (a product of xanthine dehydrogenase) or allopurinol (an inhibitor of xanthine dehydrogenase) could modulate sensitivity to ROS in a bb_0554-bb_0556 dependent manner. Together, this study identifies a previously uncharacterized three gene operon in B. burgdorferi as encoding a putative xanthine dehydrogenase critical for virulence. We propose renaming this locus xdhACB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.