In view of the operating characteristics for voltage sags of AC side of the power electronic transformer(PET), a low-voltage ride through(LVRT) strategy adapted to bidirectional power exchange of PET is proposed for the purposes of maintaining the system stability, assisting the system voltage recovery and protecting PET safety. During the asymmetric voltage sag, the negative sequence current of PET is eliminated to ensure the symmetry of the injected current. According to the degree of positive sequence voltage sag, the reactive current injection is provided to assist in voltage recovery. According to the PET active power condition before the voltage sag, the level and direction of which are maintained as far as possible without exceeding the limit, for which the disturbance to the AC and DC grids is reduced. Finally, the effectiveness of the proposed LVRT strategy is verified by simulation model.