Adequate pattern and consistency of the muscle recruitment is essential to symbolize the destruction of the opponent with high movement velocities and precise targeting of the opponent's head and body during a karate jab. The purpose of this study was to evaluate the reaction time (RT), motor time (MT), and total response time (TRT), as well as their correlation during a karate jab, and to investigate the recruitment pattern and consistency of muscles during motor time. As many as 14 professional karate athletes (age: 23.67 ± 2.64 years; height: 174.57 ± 7.13 cm; and weight: 72.75 ± 10.65 kg) participated in the current study. Each subject was instructed to pose in combat stance first and then to use their left hand to jab at an instrumented kicking target as soon as they saw the start signal. Surface electromyograms (EMGs) were recorded from 16 muscles, namely the pronator teres, biceps brachii, triceps brachii, and deltoid of the left upper limb, right erector spinae, left rectus abdominis, and gluteus maximus, rectus femoris, biceps femoris, tibialis anterior, and medial gastrocnemius of the right and left lower limbs. Start and stop signals from the instrumented target were also recorded synchronously to obtain the TRT. Significant correlation between MT and TRT indicated that MT was a key determinant for the TRT of the jab. When performing a karate jab, the karate athletes initiated the movement with postural adjustments of the legs and trunk prior to the onset of the voluntary jab by the upper limb, and with a proximal-to-distal sequence of muscle activation in the left arm. Good consistencies of muscle recruitment of the trunk, left arm, and leg, and cocontraction of the left triceps and biceps brachii also indicated a well-controlled jab by the left arm. These results provide important information on the patterns and the consistencies of the muscle recruitment for coaching a karate jab, which should be helpful for a better understanding of the motor control strategies of a karate jab and for developing a suitable training protocol.