Several chemical problems can occur during the production of oil and gas through flow lines. This includes corrosion, scale deposition and gas hydrate plugging. Three separate chemicals may be needed to treat these issues. Kinetic hydrate inhibitors (KHIs) are used in cold oil or natural gas production flow lines to prevent the formation and plugging of the line with gas hydrates. They are often injected concomitantly with other production chemicals such as corrosion and scale inhibitors. KHIs are specific low molecular weight water-soluble polymers with amphiphilic groups formulated with synergists and solvents. However, many corrosion inhibitors (CIs) are antagonistic to the KHI polymer, severely reducing the KHI performance. It would be preferable and economic if the KHI also could act as a CI. We have explored the use of maleic-based copolymers as KHIs as well as their use as film-forming CIs. KHIs were tested using a natural gas mixture in high pressure rocking cells using the slow constant cooling test method. A terpolymer from reaction of vinyl acetate:maleic anhydride copolymer with cyclohexy lamine and 3,3-di-n-butylaminopropylamine (VA:MA-60% cHex-40% DBAPA), gave excellent performance as a KHI, better than the commercially available poly(N-vinyl caprolactam) (PVCap). CO2 corrosion inhibition was measured by Linear Polarization Resistance (LPR) in a 1 litre CO2 bubble test equipment using C1018 steel coupons. The new terpolymer gave good CO2 corrosion inhibition in 3.6 wt% brine, significantly better than PVCap, but not as good as a commercial imidazoline-based surfactant corrosion inhibitor. The terpolymer also showed good corrosion inhibition efficiency at high salinity conditions, (density 1.12 g/cm3). VA:MA-60% cHex-40% DBAPA shifted the open-circuit potential to more positive values and significantly decreased the corrosion rate.