In order to understand the effect of traditional solvents on lignin pyrolysis, the decarbonylation and decarboxylation reactions of various phenylic lignin model compounds were theoretically investigated using DFT methods at M06-2×/6–31++G(d,p) level. The calculation results show that activation energy of the decarbonylation and decarboxylation reactions of lignin model compounds can be reduced when H2O/CH3OH existed. There are two types of reaction for the H2O/CH3OH during the pyrolysis. For first type, the synergistic reaction of lignin with H2O/CH3OH as hydrogen transfer carrier. The energy barriers of the main elemental reaction steps during this type of pyrolysis are about 285.0–300.0 kJ/mol (H2O) and 275.0–290.0 kJ/mol (CH3OH) (decarbonylation), 170.0–210.0 kJ/mol and 155.0–200.0 kJ/mol (decarboxylation). For another type, the synergistic reaction of lignin with H2O/CH3OH as hydrogen source. The energy barriers of the main elemental reaction steps during this type of pyrolysis are about 260.0–278.0 kJ/mol and 240.0–260.0 kJ/mol, 303.0–312.0 kJ/mol and 291.0–297.0 kJ/mol. Furthermore, the reaction temperature has the most significant impact on decomposition reaction of lignin in a methanol medium, suggesting that the reaction in the methanol medium is better than that in the water environment.
Read full abstract