Abstract

In order to understand the effect of traditional solvents on lignin pyrolysis, the decarbonylation and decarboxylation reactions of various phenylic lignin model compounds were theoretically investigated using DFT methods at M06-2×/6–31++G(d,p) level. The calculation results show that activation energy of the decarbonylation and decarboxylation reactions of lignin model compounds can be reduced when H2O/CH3OH existed. There are two types of reaction for the H2O/CH3OH during the pyrolysis. For first type, the synergistic reaction of lignin with H2O/CH3OH as hydrogen transfer carrier. The energy barriers of the main elemental reaction steps during this type of pyrolysis are about 285.0–300.0 kJ/mol (H2O) and 275.0–290.0 kJ/mol (CH3OH) (decarbonylation), 170.0–210.0 kJ/mol and 155.0–200.0 kJ/mol (decarboxylation). For another type, the synergistic reaction of lignin with H2O/CH3OH as hydrogen source. The energy barriers of the main elemental reaction steps during this type of pyrolysis are about 260.0–278.0 kJ/mol and 240.0–260.0 kJ/mol, 303.0–312.0 kJ/mol and 291.0–297.0 kJ/mol. Furthermore, the reaction temperature has the most significant impact on decomposition reaction of lignin in a methanol medium, suggesting that the reaction in the methanol medium is better than that in the water environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.