AbstractThe reaction mechanisms of the gold(I)‐catalyzed cross‐coupling reaction of aryldiazoacetate R1 with vinyldiazoacetate R2 leading to N‐substituted pyrazoles have been theoretically investigated using density functional theory calculations. Two possible reaction mechanisms were examined and discussed. The preferred reaction mechanism (mechanism A) can be characterized by five steps: the formation of the gold carbenoid A2 via the attack of catalyst to R1 (step I), nucleophilic addition of another reactant R2 to generate intermediate A3 (step II), intramolecular cyclization of A3 to form intermediate A4 (step III), hydrogen migration to give intermediate A5 (step IV), and catalyst elimination affording the final product P1 (step V). Step IV is found to be the rate‐determining step with an overall free energy barrier of 28.3 kcal/mol. Our calculated results are in good agreement with the experimental observations. The present study may provide a useful guide for understanding these kinds of gold(I)‐catalyzed cross‐coupling reactions of diazo compounds.
Read full abstract