Abstract

AbstractThe reaction mechanisms of the gold(I)‐catalyzed cross‐coupling reaction of aryldiazoacetate R1 with vinyldiazoacetate R2 leading to N‐substituted pyrazoles have been theoretically investigated using density functional theory calculations. Two possible reaction mechanisms were examined and discussed. The preferred reaction mechanism (mechanism A) can be characterized by five steps: the formation of the gold carbenoid A2 via the attack of catalyst to R1 (step I), nucleophilic addition of another reactant R2 to generate intermediate A3 (step II), intramolecular cyclization of A3 to form intermediate A4 (step III), hydrogen migration to give intermediate A5 (step IV), and catalyst elimination affording the final product P1 (step V). Step IV is found to be the rate‐determining step with an overall free energy barrier of 28.3 kcal/mol. Our calculated results are in good agreement with the experimental observations. The present study may provide a useful guide for understanding these kinds of gold(I)‐catalyzed cross‐coupling reactions of diazo compounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.