Cellulose esters are used in Food and Drug Administration-approved oral formulations, including in amorphous solid dispersions (ASDs). Some bear substituents with terminal carboxyl moieties (e.g., hydroxypropyl methyl cellulose acetate succinate (HPMCAS)); these ω-carboxy ester substituents enhance interactions with drug molecules in solid and solution phases and enable pH-responsive drug release. However, the synthesis of carboxyl-pendent cellulose esters is challenging, partly due to competing reactions between introduced carboxyl groups and residual hydroxyls on different chains, forming either physically or covalently cross-linked systems. As we explored ring-opening reactions of cyclic anhydrides with cellulose and its esters to prepare polymers designed for high ASD performance, we became concerned upon encountering gelation. Herein, we probe the complexity of such ring-opening reactions in detail, for the first time, utilizing rheometry and solid-state 13C NMR spectroscopy. Gelation in these ring-opening reactions was caused predominantly by physical interactions, progressing in some cases to covalent cross-links over time.
Read full abstract