Abstract One of the most important problems in the field of the physics and chemistry of rubber is that of vulcanization. Until now no single theory has been established, which elucidates the complex physico-chemical changes which occur during this process. Still more obscure has been the mechanism of the action of vulcanization accelerators, which, as is well known, not only reduce the time and the temperature of vulcanization, but also influence the physico-mechanical and chemical properties of the rubber. Most investigators have assumed that in the acceleration process a reaction with sulfur converts it to an active form which is capable of bringing about vulcanization at a lower temperature and at a greater rate, than with ordinary elemental sulfur in the absence of an accelerator. This point of view is based on the experimental fact that the vulcanization of rubber by sulfur dioxide and hydrogen sulfide, for example, which form sulfur in the nascent condition, proceeds rapidly even at room temperature. Investigators have also assumed that in the vulcanization process activation of sulfur in the presence of accelerators may occur by different mechanisms. It is possible that the accelerator, reacting with elemental sulfur, forms unstable intermediate compounds, which decompose with liberation of sulfur in an active form. The latter reacts with rubber, and the regenerated accelerator reacts again with elemental sulfur, etc. However, a different process is possible for the activation of elemental sulfur. By this second mechanism the unstable combination of accelerator and sulfur reacts directly with rubber without the formation of active sulfur. Both these mechanisms necessarily assume the formation of intermediate unstable combinations of the accelerator with sulfur. However, direct, experimentally-based demonstrations of such an interaction are lacking in the literature. There exist only theoretical hypotheses concerning the nature of the possible intermediate combination of the accelerator with sulfur. According to Ostromislensky's concepts, further developed by Bedford, such an intermediate compound has the character of a polysulfide. According to Bruni and Romani, this intermediate compound is a disulfide. As is well known, the disulfide theory was placed in doubt by Zaide and Petrov on the basis of data from the vulcanization of rubber in the presence of benzothiazolyl disulfide.