BackgroundOur previous clinical trial demonstrated that antimicrobial photodynamic therapy (aPDT) with methylene blue (MB) and potassium iodide (KI) effectively killed Candida albicans (C. albicans) in adult AIDS patients with oral candidiasis, regardless of biofilm formation or 25S rDNA genotype. This study evaluated changes in antifungal susceptibility and virulence gene expression in C. albicans before and after aPDT, and explored factors related to clinical aPDT efficacy. MethodsTwenty-one adult AIDS patients with C. albicans oral candidiasis were divided into Group a (400 μM MB, N = 11) and Group b (600 μM MB, N = 10). Both groups received two aPDT treatments, where MB was applied for 5 min, followed by 300 mM KI, and illuminated for 30 min (37.29 J/cm²). C. albicans isolates were collected before and after treatment to assess antifungal susceptibility (fluconazole, itraconazole, flucytosine, amphotericin B) and gene expression (CAT1, HWP1). Peripheral blood tests were analyzed for correlations with aPDT efficacy. ResultsaPDT reduced minimum inhibitory concentration (MIC) values for amphotericin B, fluconazole, and flucytosine, with significant reductions primarily after the first treatment. MIC reductions differed between groups, with Group a showing greater decreases in flucytosine and fluconazole MICs, and Group b in amphotericin B MICs. No significant changes in CAT1 or HWP1 expression were observed. Clinical efficacy of aPDT negatively correlated with leukocyte and neutrophil levels. ConclusionsaPDT effectively reduces MICs of antifungal drugs against C. albicans isolated from treated patients, particularly after the first treatment. The concentration of MB required to reduce MICs varies among different antifungal drugs. aPDT does not alter CAT1 or HWP1 expression, and its clinical efficacy in eradicating C. albicans is negatively associated with leukocyte and neutrophil levels.
Read full abstract