When imaging particles through a shock wave, the resulting particle image appears blurred and at the wrong location, which is referred to as a position error. Particle image doublets are observed if only part of the light scattered by a particle is deflected or reflected by the shock. These optical distortions are due to the jump in the refractive index that occurs over the shock. Within the context of popular particle-based velocimetry techniques, such as particle image velocimetry and particle tracking velocimetry, the position error propagates into an error in the measured velocity. These particle image distortions and associated errors are assessed and quantified in this paper for the case of planar shocks by means of a light ray tracing approach and by experiments. The errors are shown to be most sensitive to the angle between the viewing direction and the plane of the shock. Increasing this angle to modest values (~5°) is a particularly effective way to decrease the relative velocity error. Looking at the shock from the high-density side is recommended when the accurate determination of the particle response to the shock wave is desired.
Read full abstract