Ensuring operational reliability and efficiency in steam power plants requires advanced and generalized fault detection methodologies capable of addressing diverse fault scenarios in boiler and turbine systems. This study presents an autonomous fault detection framework that integrates deep feature extraction through Convolutional Autoencoders (CAEs) with the ensemble machine learning technique, Extreme Gradient Boosting (XGBoost). CAEs autonomously extract meaningful and nonlinear features from raw sensor data, eliminating the need for manual feature engineering. Principal Component Analysis (PCA) is employed for dimensionality reduction, enhancing computational efficiency while retaining critical fault-related information. The refined features are then classified using XGBoost, a robust ensemble learning algorithm, ensuring accurate fault detection. The proposed model is validated through real-world case studies on boiler waterwall tube leakage and motor-driven oil pump failure in steam turbines. Results demonstrate the framework’s ability to generalize across diverse fault types, detect anomalies at an early stage, and minimize operational downtime. This study highlights the transformative potential of combining deep feature extraction and ensemble machine learning for scalable, reliable, and efficient fault detection in power plant operations.
Read full abstract