The aim was to develop sedentary (sitting/lying) thresholds from hip and wrist worn raw tri-axial acceleration data from the ActiGraph and GENEActiv, and to examine the agreement between free-living time spent below these thresholds with sedentary time estimated by the activPAL. Sixty children and adults wore an ActiGraph and GENEActiv on the hip and wrist while performing six structured activities, before wearing the monitors, in addition to an activPAL, for 24h. Receiver operating characteristic (ROC) curves were used to determine sedentary thresholds based on activities in the laboratory. Agreement between developed sedentary thresholds during free-living and activPAL were assessed by Bland-Altman plots and by calculating sensitivity and specificity. Using laboratory data and ROC-curves showed similar classification accuracy for wrist and hip thresholds (Areaunder the curve=0.84-0.92). Greatest sensitivity (97-98%) and specificity (74-78%) were observed for thewrist thresholds, with no large differences between brands. During free-living, Bland-Altman plots showed large mean individual biases and 95% limits of agreement compared with activPAL, with smallest difference for the ActiGraph wrist threshold in children (+30min, P=0.3). Sensitivity and specificity for the developed thresholdsduring free-living were low for both age groups and for wrist (Sensitivity, 68-88%, Specificity, 46-59%) and hip placements (Sensitivity, 89-97%, Specificity, 26-34%). Laboratory derived sedentary thresholds generally overestimate free-living sedentary time comparedwith activPAL. Wrist thresholds appear to perform better than hip thresholds for estimating free-living sedentary time in children and adults relative to activPAL, however, specificity for all the developed thresholds are low.
Read full abstract