Motivated by the classical Rodrigues’ formula, we study below the root asymptotic of the polynomial sequence R[αn],n,P(z)=d[αn]Pn(z)dz[αn],n=0,1,⋯\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\begin{aligned} {\\mathcal {R}}_{[\\alpha n],n,P}(z)=\\frac{\\mathop {}\\!\ extrm{d}^{[\\alpha n]}P^n(z)}{\\mathop {}\\!\ extrm{d}z^{[\\alpha n]}}, n= 0,1,\\dots \\end{aligned}$$\\end{document}where P(z) is a fixed univariate polynomial, α\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\alpha $$\\end{document} is a fixed positive number smaller than degP\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\deg P$$\\end{document}, and [αn]\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$[\\alpha n]$$\\end{document} stands for the integer part of αn\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\alpha n$$\\end{document}. Our description of this asymptotic is expressed in terms of an explicit harmonic function uniquely determined by the plane rational curve emerging from the application of the saddle point method to the integral representation of the latter polynomials using Cauchy’s formula for higher derivatives. As a consequence of our method, we conclude that this curve is birationally equivalent to the zero locus of the bivariate algebraic equation satisfied by the Cauchy transform of the asymptotic root-counting measure for the latter polynomial sequence. We show that this harmonic function is also associated with an abelian differential having only purely imaginary periods and the latter plane curve belongs to the class of Boutroux curves initially introduced in Bertola (Anal Math Phys 1: 167–211, 2011), Bertola and Mo (Adv Math 220(1): 154–218, 2009). As an additional relevant piece of information, we derive a linear ordinary differential equation satisfied by {R[αn],n,P(z)}\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\{{\\mathcal {R}}_{[\\alpha n],n,P}(z)\\}$$\\end{document} as well as higher derivatives of powers of more general functions.
Read full abstract