The rational design of multi-site electrocatalysts with three different functions for facile H2O dissociation, H-H coupling, and rapid H2 release is desirable but difficult to achieve. This strategy can accelerate the sluggish kinetics of the hydrogen evolution reaction (HER) under alkaline conditions. To resolve this issue, a Mo/Ru-based catalyst with three different active sites (Ru/Mo2C/MoO2) is rationally designed and its performance in alkaline HER is evaluated. The experimental results and density functional theory calculations revealed that, at the heterogeneous Mo2C/MoO2 interface, the higher valence state of Mo (MoO2) and the lower valence state of Mo (Mo2C) exhibited strong OH- and H-binding energies, respectively, which accelerated H2O dissociation. Moreover, the interfacial Ru possessed an appropriate hydrogen binding energy for H-H coupling and subsequent H2 evolution. Thus, this catalyst significantly accelerated the Volmer step and the Tafel step and, consequently, HER kinetics. This catalyst also demonstrated low overpotentials of 19 and 160mV at current densities of 10 and 1000mA cm-2, respectively, in alkaline media and long-term stability superior to that of most state-of-the-art alkaline HER electrocatalysts. This work provides a rational design principle for advanced multi-site catalytic systems, which can realize multi-electron electrocatalytic reactions.