Abstract

Rational design principles for ultra-broadband lattice-based metastructure absorbers (MMAs) remain scarcely explored, including elucidation of the governing absorption phenomena. This work presents Octet truss lattices gradient-tailored to achieve highly efficient wide-spectrum electromagnetic (EM) wave mitigation. The optimized 15 mm thick three-dimensional printed architectures comprise three stacked sub-layers with graduated densities spanning a reflective backing. Analysis of unit cell EM responses as a function of geometric parameters facilitates concurrent broadband absorption and minimal mass. Consequently, ultra-wideband absorption below −10 dB persists from 2.84 to 40.0 GHz under normal incidence, with strongly enhanced attenuation below −15 dB between 8.51 and 40.0 GHz. Additionally, consistent absorption capacity endures up to 60° for both transverse electric (TE) and transverse magnetic (TM) polarizations, empowered by the intricate conductive networks established through wave interactions. The unique combination of additive manufacturing, hierarchical metamaterial engineering, and physical insights provides a versatile strategy for customized broadband absorption systems across application domains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call