Power transformers are vital components of electrical power systems, ensuring reliable and efficient energy transfer between high-voltage transmission and low-voltage distribution networks. However, they are prone to various faults, such as insulation breakdowns, winding deformations, partial discharges, and short circuits, which can disrupt electrical service, incur significant economic losses, and pose safety risks. Traditional fault diagnosis methods, including visual inspection, dissolved gas analysis (DGA), and thermal imaging, face challenges such as subjectivity, intermittent data collection, and reliance on expert interpretation. To address these limitations, this paper proposes a novel distributed approach for multi-fault diagnosis of power transformers based on a self-organizing neural network combined with data augmentation and incremental learning techniques. The proposed framework addresses critical challenges, including data quality issues, computational complexity, and the need for real-time adaptability. Data cleaning and preprocessing techniques improve the reliability of input data, while data augmentation generates synthetic samples to mitigate data imbalance and enhance the recognition of rare fault patterns. A two-stage classification model integrates unsupervised and supervised learning, with k-means clustering applied in the first stage for initial fault categorization, followed by a self-organizing neural network in the second stage for refined fault diagnosis. The self-organizing neural network dynamically suppresses inactive nodes and optimizes its training parameter set, reducing computational complexity without sacrificing accuracy. Additionally, incremental learning enables the model to continuously adapt to new fault scenarios without modifying its architecture, ensuring real-time performance and adaptability across diverse operational conditions. Experimental validation demonstrates the effectiveness of the proposed method in achieving accurate, efficient, and adaptive fault diagnosis for power transformers, outperforming traditional and conventional machine learning approaches. This work provides a robust framework for integrating advanced machine learning techniques into power system monitoring, paving the way for automated, real-time, and reliable transformer fault diagnosis systems.
Read full abstract