BackgroundStudies suggest that COVID-19 infection may induce increased hypercoagulability, leading to thrombotic complications. The high rates of thrombotic complications among patients receiving standard-dose deep venous thrombosis (DVT) prophylaxis have prompted some clinicians to support the empiric increase of anticoagulation (AC) doses used for prophylaxis in patients with COVID-19. At present, the optimal anticoagulant agents, dosages, and duration have not been designated. We conducted a retrospective study to assess for outcomes in patients who received treatment for COVID-19 based on various dosings of AC.MethodsThis was a single-institution, retrospective cross-sectional study including patients with a positive COVID-19 test who were admitted within the St. Joseph’s Health Network from September to November of 2020. The inclusion criteria were men and women aged 18 years or older who had confirmed COVID-19 by polymerase chain reaction (PCR). Medical charts of patients who met the inclusion criteria were audited to obtain information. The patients were separated into three cohorts: those who received DVT prophylactic dose of AC, those who received an intermediate dose of AC, and those who received therapeutic AC.ResultsA total of 440 patients were included in the study, of whom 236 were Hispanic (50.3%), 131 were Caucasian (27.1%), 47 were African American (10.7%), and 26 were Asian (5.9%). The most common comorbidities were hypertension (273/440 [62.2%]), diabetes 189/440 [43.1%]), and coronary artery disease (60/440 [13.7%]). In the DVT prophylactic dose of AC cohort, there were 215 patients, and the average length of stay was 10.3 days. Eleven patients experienced bleeding events, five patients experienced thrombotic events, 16 patients required mechanical ventilation, and 20 patients died. In the intermediate dose of AC cohort, there were 63 patients, and the average length of stay was 10.3 days. Three patients experienced bleeding events, two patients experienced thrombotic events, seven patients required mechanical invasive ventilation, and 11 patients died. In the therapeutic dose of AC cohort, there were 162 patients, and the average length of stay was 14 days. In this cohort, 19 patients experienced bleeding events, 12 patients experienced thrombotic events, 26 patients required invasive mechanical ventilation, and 29 patients died. Patients who received intermediate dosing of AC also had the lowest risk of thrombotic events (0.05). Patients who received intermediate dosing of AC had the lowest rates of requiring both high-flow nasal cannula (p = 0.0001) and invasive mechanical ventilation (p = 0.031). Patients who received intermediate dosing of AC had a lower rate of bleeding compared to those who received the DVT prophylaxis dose and systemic AC dose (p = 0.037). The DVT prophylactic and intermediate dosing of AC groups had a shorter length of stay in comparison to the systemic AC group (p = 0.0002).ConclusionIn comparison to the venous thromboembolism prophylaxis dose and systemic AC dose groups, intermediate dosing of AC had the lowest rates of hemorrhage, mortality, length of stay, and requirement of high-flow nasal cannula or mechanical invasive ventilation. In the systemic dose AC group, there were worse clinical outcomes in terms of length of stay, incidence of bleeding events, requirement of mechanical ventilator use, and rate of mortality.
Read full abstract