Phosphoenolpyruvate carboxylase (PEPC) and citrate synthase (CS) are two key enzymes in organic acid synthesis metabolism. In the present study, a cytoplasmic form of CS from tobacco and a mutant (with reduced sensitivity to organic acid inhibition) PEPC from Synechococcus vulcanus were overexpressed simultaneously using a light-inducible promoter in tobacco leaves. The analysis for enzyme activity showed that CS and PEPC enzyme activities were increased by 235% to 257% and 218% to 236% in the selected cs and pepc (double-gene) overexpression lines, respectively, compared with those in the wild-type plants (WT). The measurement for the relative root elongation rate of the tobacco plants exposed to 30 μM aluminum (Al) indicated that Al tolerance in the double-gene overexpression lines was stronger than that of the transgenic cs or pepc lines and WT plants. The 13C-NMR analysis with NaH13CO3 showed that overexpression of CS and PEPC in the transgenic tobacco successfully constructed a new citrate synthesis pathway. Under the conditions with Al stress, the amount of citrate secreted from the double-transgenic tobacco roots was the largest among the tested plants. When grown on sandy soil supplied with a nutritional solution containing 500 μM Al, the growth of the double-transgenic tobacco was better than that of the transgenic cs or pepc tobacco and WT, and their root biomass was the highest among the tested plants. These results demonstrated that construction of a new citrate synthesis pathway by simultaneous overexpression of CS and PEPC in the cytoplasm of transgenic plant leaves could enhance Al resistance in plants.
Read full abstract