Polymeric carbon nitride (PCN) as a class of two-electron oxygen reduction reaction (2 e- ORR) photocatalyst has attracted much attention for H2 O2 production. However, the low activity and inferior selectivity of 2 e- ORR greatly restrict the H2 O2 production efficiency. Herein, we develop a new strategy to synthesize hydrophilic, fragmented PCN photocatalyst by the terminating polymerization (TP-PCN) effect of iodide ions. The obtained TP-PCN with abundant edge active sites (AEASs), which can form quasi-homogeneous photocatalytic system, exhibits superior H2 O2 generation rate (3265.4 μM h-1 ), far surpassing PCN and other PCN-based photocatalysts. DFT calculations further indicate that TP-PCN is more favorable for electron transiting from β spin-orbital to the π* orbitals of O2 , which optimizes O2 activation and reduces the energy barrier of H2 O2 formation. This work provides a new concept for designing functional photocatalysts and understanding the mechanism of O2 activation in ORR for H2 O2 production.
Read full abstract