In this paper, we study the global existence and the asymptotic behavior of the solutions to the Cauchy problem for the following nonlinear evolution equations with ellipticity and dissipative effects (E) $$ \left\{ \begin{aligned} & \psi _t = - (1 - \alpha )\psi - \theta _x + \alpha \psi _{xx} , \\ & \theta _t = - (1 - \alpha )\theta + \nu \psi _x + 2\psi \theta _x + \alpha \theta _{xx} , \\ \end{aligned} \right. $$ with initial data (I) $$ (\psi ,\theta )(x,0) = (\psi _0 (x),\theta _0 (x)) \to (\psi _ \pm ,\theta _ \pm )\quad {\text{as}}\quad x \to \pm \infty , $$ where α and ν are positive constants such that α < 1,ν < α (1−α). Through constructing a correct function % MathType!Translator!2!1!AMS LaTeX.tdl!TeX -- AMS-LaTeX! % MathType!MTEF!2!1!+- % feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK % aacaGGOaGaamiEaiaacYcacaWG0bGaaiykaaaa!3BB3! $$\hat \theta (x,t)$$ defined by (2.13) and using the energy method, we show % MathType!Translator!2!1!AMS LaTeX.tdl!TeX -- AMS-LaTeX! % MathType!MTEF!2!1!+- % feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaci % GGZbGaaiyDaiaacchaaSqaaiaadIhacqGHiiIZtuuDJXwAK1uy0HMm % aeHbfv3ySLgzG0uy0HgiuD3BaGqbbiab-1risbqabaGccaGGOaWaaq % qaaeaacaGGOaGaeqiYdKNaaiilaiabeI7aXjaacMcacaGGOaGaamiE % aiaacYcacaWG0bGaaiykamaaeeaabaGaey4kaScacaGLhWoadaabba % qaaiaacIcacqaHipqEdaWgaaWcbaGaamiEaaqabaaakiaawEa7aiaa % cYcacqaH4oqCdaWgaaWcbaGaamiEaaqabaGccaGGPaGaaiikaiaadI % hacaGGSaGaamiDaiaacMcadaabbaqaaiaacMcacqGHsgIRcaaIWaaa % caGLhWoaaiaawEa7aaaa!6701! $$\mathop {\sup }\limits_{x \in \mathbb{R}} (\left| {(\psi ,\theta )(x,t)\left| + \right.\left| {(\psi _x } \right.,\theta _x )(x,t)\left| {) \to 0} \right.} \right.$$ as % MathType!Translator!2!1!AMS LaTeX.tdl!TeX -- AMS-LaTeX! % MathType!MTEF!2!1!+- % feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgk % ziUkabg6HiLcaa!3A45! $$t \to \infty $$ and the solutions decay with exponential rates. The same problem is studied by Tang and Zhao [10] for the case of (ψ±, θ±) = (0,0).