Cultivation of diatoms may help alleviate the pressure on wild fish stocks for marine nutrient availability in aquaculture feed and for human consumption. However, the lipids in microalgae biomass are easily deteriorated, both trough lipolysis and degradation of polyunsaturated fatty acids (PUFA). Proper storage conditions are therefore necessary to maintain the lipid quality. Additionally, the storage conditions must have a low cost and facilitate further processing of the biomass. In this study, we investigated the formation of free fatty acids, changes in lipid classes, and fatty acid composition of the psychrophilic marine diatom Porosira glacialis under storage. The wet biomass was stored for 14 days at 4 and 20 °C with either heat treatment, formic acid, or benzoic acid addition, and a control sample. Heat-treated and formic acid samples had the lowest rate of free fatty acid formation during storage. Mainly, polar lipids were hydrolyzed to free fatty acids and this occurred fastest at 20 °C. The fatty acid composition remained stable in heat-treated samples during storage, whereas a loss of PUFA was observed in the other treatments. The lack of effect from benzoic acid indicates that the loss of lipid quality stems from endogenous enzymes rather than exogenous organisms. Heat treatment and formic acid appeared to effectively reduce lipase activity, and potentially lipoxygenase and similar enzymes that affect the fatty acids. The low pH of the formic acid samples seems to have a negative effect on the PUFA content, in particular at 20 °C.
Read full abstract