Ethnopharmacological relevanceCodonopsis pilosula (C. pilosula), commonly known as Dangshen in Chinese, had been used to regulate the immune, digestive, and circulatory systems of human. The reported pharmacokinetic studies on C. pilosula are mainly limited to in vivo profile studies of a single component. It has not been detected simultaneously the in vivo pharmacokinetic profiles of multiple active components as well as related gender difference after oral dosing of the extraction of C. pilosula. Aim of the studyThis study aims to reveal the pharmacokinetic characteristics of the four main active components of C. pilosula after oral dosing of its extraction in rats, and to explain the gender differences in absorption and metabolism. Materials and methodsThe plasma pharmacokinetic characteristics of four main active components of C. pilosula was explored using the established LC-MS/MS method after oral dosing of the extraction of C. pilosula in male and female rats. In vitro intestinal pouch permeability and liver microsome metabolic stability were also observed to classify the possible mechanism of gender difference existed in the pharmacokinetic profiles of the four active components in rats. ResultsFour effective components were absorbed quickly in rats after oral administration of alcoholic extract of C. pilosula (1.36 g/mL, equivalent to 2 g/mL as crude drug), and their exposure order was as follows: Atractylenolide III > Lobetyolin > Tangshenoside I > Syringin. The exposure (AUC) and peak concentration (Cmax) of Atractylenolide III in female rats were much higher than those in male rats, indicating a significant gender difference in pharmacokinetics of Atractylenolide III between female and male animals. With the help of the rat model of intestinal sac in vitro, it was found that Lobetyolin was a hypertonic compound, and both Tangshenoside I and Syringin were compounds with medium permeabiltiy. Notably, the Papp of Atractylenolide III was 3.3 × 10−6 cm/s in male rat intestinal sac assay, while that was 10 × 10−6 cm/s in female rat intestinal sac model, showing a significant gender difference in intestinal permeability (P < 0.05). After the addition of NADPH, the four compounds were reduced in a time-dependent manner, suggesting that CYP450s could catalyze their metabolism. After incubation, the remaining content of Atractylenolide III in the liver microsomes of male and female rats was 27% and 57%, respectively, suggesting slower metabolic rate of in female rat liver microsomes. ConclusionA simple, efficient and reliable LC-MS/MS method for the simultaneous determination of four active index components of C. pilosula, Lobetyolin, Tangshenoside I, Atractylenolide III and Syringin, in rat plasma was established and verified. This method was successfully applied in the pharmacokinetic study after single oral administration of the alcoholic extract of C. pilosula in rats. Gender difference was observed in the pharmacokinetic profile of Atractylenolide III in rats. Intestinal absorption and liver metabolism might be two key factors that resulted in the gender difference in exposure and pharmacokinetics of Atractylenolide III in rats. This study provides supportive data for clinical rational application of C. pilosula in individualized medication therapy.
Read full abstract