Adipose-derived stem cells (ADSCs) are a type of adult mesenchymal stem cell that show a repair effect on ischemic tissues owing to their capacity for endothelial differentiation. MicroRNA-221/222 (miR-221/222) has been extensively studied in endothelial cells (ECs). However, the mechanism that regulates ADSCs differentiation into ECs remains unknown. In this study, we investigated the effects of miR-221/222-overexpression/silence in ADSCs on endothelial differentiation by constructing lentiviral vectors. Differentiation capacity was assessed by measuring the expression of endothelial markers (CD31, CD34, and CD144). In addition, low-density lipoprotein (LDL) uptake and tube-like formation were performed for evaluation of functional characterization. The PTEN/PI3K/AKT/mTOR signaling pathway was investigated using western blotting to clarify the action mechanism of this gene. The revascularization of miR-221/222-transfeted ADSCs was further verified in a rat hind limb ischemia model. The results confirmed that transfection with miR-221/222 promoted the expression of endothelial markers, LDL uptake, and tube-like formation. As expected, the PI3K/AKT signaling pathway was effectively activated when ADSCs showed high expression of miR-221/222 during endothelial differentiation. Furthermore, injection of miR-221/222 transfected ADSCs significantly improved rat hindlimb ischemia, as evidenced by increased blood flow and structural integrity and reduce inflammatory infiltration. The results of this study suggest that miR-221/222 is essential for endothelial differentiation of ADSCs and provides a novel strategy for modulating vascular formation and ischemic tissue regeneration.
Read full abstract