Abstract

BackgroundHyperbaric oxygen (HBO) could improve wound healing by enhancement of angiogenesis. The effect of HBO on metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), a proangiogenic long noncoding RNA, and on endothelial cell-derived exosome is unknown. We aim to investigate both whether MALAT1 is altered in human coronary artery endothelial cells (HCAECs)-derived exosomes in response to HBO as well as the molecular regulatory mechanisms of MALAT1 in HCAECs under HBO treatment. Methods and resultsHCAECs were cultured and HBO was applied at 2.5 atmosphere absolute (ATA) in a hyperbaric chamber. Exosomes were extracted from culture media. A rat model of hind-limb ischemia was performed by ligation of the right femoral artery. HBO at 2.5 ATA significantly increased MALAT1 expression in HCAECs and HCAECs-derived exosomes. MALAT1 suppressed miR-92a expression in HCAEC-derived exosomes under HBO. Silencing MALAT1 by MALAT1 siRNA significantly inhibited KLF2 mRNA expression induced by HBO, as did MiR-92a. MiR-92a significantly decreased KLF2 luciferase activity in HCAECs under HBO. HBO and HBO-induced exosomes significantly increased cell proliferation and the capillary-like network formation of HCAECs. MALAT1 siRNA and miR-92a overexpression significantly attenuated the cell proliferation and tube formation caused by HBO-induced exosome. HBO and HBO-induced exosomes significantly improved neovascularization in a rat model of hind-limb ischemia. ConclusionsHBO upregulates MALAT1 to suppress miR-92a expression and counteracts the inhibitory effect of miR-92a on KLF2 expression in HCAECs to enhance neovascularization. HBO-induced derivation of exosomes from HCAECs enhances angiogenesis. Exosomes containing MALAT1 might serve as a valuable therapeutic tool for neovascularization by HBO.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call