Arabinoxylan (AX) from cereals and millets have garnered attention due to the myriad of their bioactivities. Pearl millet (Pennisetum glaucum) bran, an underexplored milling by-product was used to extract AX (PMAX) by optimized alkali-assisted extraction using Response Surface Methodology and Central Composite Design, achieving a yield of 15.96 ± 0.39 % (w/w) under optimal conditions (0.57 M NaOH, 1:17 g/mL solid-to-liquid ratio, 60 °C, 4 h). Structural analysis revealed that PMAX was primarily composed of arabinose, xylose, glucose, galactose, and mannose (molar ratio 45.1:36.1:10.4:7.1:1.8), with a highly substituted (1 → 4)-linked β-D-xylopyranose backbone and a molecular weight of 794.88 kDa. PMAX displayed a significant reducing power of 0.617, metal chelating activity of 51.72 %, and DPPH, and ABTS radical scavenging activities (64.43 and 75.4 %, respectively at 5 mg/mL). It also demonstrated anti-glycation effects by inhibiting fructosamine (52.5 %), protein carbonyl (53.6 %), and total advanced glycation end products (77.0 %) formation, and reduced protein oxidation products such as dityrosine (84.7 %), kynurenine (80.2 %), and N′-formyl-kynurenine (50.0 %) at 5 mg/mL. PMAX induced the growth of Lactobacillus spp. in vitro and modulate gut microbiota in male Wistar rats by increasing Bacteroidetes and decreasing Firmicutes. These results provide a basis for further research on pearl millet arabinoxylan and its possible nutraceutical application.
Read full abstract