This paper proposes a forecast of certain rare earth flows in Europe at the 2020 horizon, based on an analysis of trends influencing various actors of the rare earth industry along the value chain. While 2020 is indicated as the forecast horizon, the analysis should be considered as more representative of the next decade. The rare earths considered here are used in applications that are important for a low-carbon energy transition and/or have a significant recycling potential: NdFeB magnets (Pr, Nd, Dy), NiMH batteries (Pr, Nd) and fluorescent lamp phosphors (Eu, Tb, Y). An analysis of major trends affecting the rare earth industry in Europe along the value chain (including extraction, separation, fabrication, manufacture, use and recycling), helps to build a scenario for a material flow analysis of these rare earths in Europe. The scenario assumes in particular that during the next decade, there exists a rare earth mine in production in Europe (with Norra Kärr in Sweden as a most likely candidate) and also that recycling is in line with targets proposed in recent European legislation. Results are presented in the form of Sankey diagrams which help visualize the various flows for the three applications. For example, calculations forecast flows from extraction to separation of Pr, Nd and Dy for magnet applications in Europe, on the order of 310tons, 980tons and 80tons rare earth metal resp., while recycled flows are 35tons, 110tons and 30tons resp. Calculations illustrate how the relative contribution of recycling to supply strongly depends on the situation with respect to demand. Considering the balance between supply and demand, it is not anticipated any significant shortage of rare earth supply in Europe at the 2020 horizon, barring any new geopolitical crisis involving China. For some heavy rare earths, supply will in fact largely outweigh demand, as for example Europium due to the phasing out of fluorescent lights by LEDs.