Computed tomography (CT) reconstruction from incomplete projection data is significant for reducing radiation dose or scanning time. In this work, we investigate a special sampling strategy, which performs two limited-angle scans. We call it orthogonal limited-angle sampling. The X-ray source trajectory covers two limited-angle ranges, and the angle bisectors of the two angular ranges are orthogonal. This sampling method avoids rapid switching of tube voltage in few-view sampling, and reduces data correlation of projections in limited-angle sampling. It has the potential to become a practical imaging strategy. Then we propose a new reconstruction model based on anisotropic self-guided image filtering (ASGIF) and present an algorithm to solve this model. We construct adaptive weights to guide image reconstruction using the gradient information of reconstructed image itself. Additionally, since the shading artifacts are related to the scanning angular ranges and distributed in two orthogonal directions, anisotropic image filtering is used to preserve image edges. Experiments on a digital phantom and real CT data demonstrate that ASGIF method can effectively suppress shading artifacts and preserve image edges, outperforming other competing methods.
Read full abstract